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This article gives the results of a preliminary investigation into the problem of
developing an efficient Initial Spares Provisioning and Spares Allocation Strategy
for the Deep Space Network operational spares. A sparing procedure is given,
based on failure and repair rates and specified operational requirements. The pro-
cedure was applied to several possible situations and the results are listed. The
results of computer simulations of these cases are given.

I. Introduction

Reference 1 establishes the responsibilities and func-
tions necessary to select, procure, allocate, and control
spare parts for equipment used by the Deep Space Instru-
mentation Facility (DSIF). The cognizant operations
engineer (COE), the cognizant development engineer
(CDE), and a representative of the DSIF Logistics Group
determine the initial complement of spare parts at a pro-
visioning conference. This conference is also held for the
purpose of identifying the funding sources to be used for
procurement, the agent responsible for procurement, the
delivery schedule, and the destination. Also described in
Ref. 1 is the operational-spare flow of material throughout
the Deep Space Network (DSN) Repair-Resupply System.
However, the decision as to the number of spares to be
provided for a given piece of equipment is at present
apparently based solely upon engineering judgment. No
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systematic analytic technique is provided to determine
the number of spares necessary to meet required per-
formance criteria. Moreover, as far as we know, Ref. 2 is
the only JPL document that specifies the quantity of
spares for DSIF electronic equipment. The rules given
in Ref. 2 are strictly rules of thumb and do not take into
account such factors as failure rates, repair rates, and
shipping time. Consequently, this method of sparing must
in many cases result in oversparing or undersparing.

Our primary purpose is to develop cfficient procedures
for use by the COEs and CDEs to assist them in determin-
ing which items should be spared, how much to spare,
and an optimal network allocation scheme for these
spares, when applicable. Both the sparing and allocation
techniques must be subject to initial funding constraints
and present maintenance policies. This preliminary re-
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port gives the results of our initial investigation of one
aspect of the sparing problem. For an individual repair-
able item we determine the operational availability as a
function of failure rate, repair rate, total logistic delay
time, and number of spares.

Il. General Assumptions

We are concerned with picces of equipment that are
removed, replaced by a spare, and repaired whenever
they fail to function. To simplify the discussion we call
any such piece of equipment a module. A module is
assumed to be in one of threc states at all times:

(1) Operating.
(2) Failed and in the repair pipeline.
(3) Spare.

While operating, it is subject to a constant failure rate A,
and while in the spares pool it is assumed not to fail. Once
failed, it waits a time T to return to the operating state
(or the spare state if it is not needed immediately). It is
assumed that T has a fixed distribution independent of all
previous waiting times for this module and other modules.

The analytic model in Section III assumes T is exponen-
tially distributed. Departures from this assumption about
T, are considered in Section IV where it is shown that
only the mean value of T has a significant effect on the
operational availability which, in gencral, is defincd as
the stationary probability that a system is operating or
operational at any given time.

I1l. Determination of Operational Availability

We consider a system of N + n identical modules, n
operating with N spares. Under the assumption that T is
exponentially distributed with mean 1/4, the operation of
the system can be described by a so-called birth-and-
death process. Detailed discussions of this process are
given in Refs. 3, 4, and 5. The state of this process at any
time is the number §, of failed modules among the N + n
modules in the system. Assuming that the system operates
as long as there is at least one module unfailed, the possi-
ble values of jare 0,1, - - - , N 4 n. The theory of Markov
chains gives the result that over a long period of operation
the fractions of time the system spends in the various
states are given by the so-called stationary distribution
{P;},i=0,1, - - - ,N +n, which can be obtained from
the following formulas:

i=N+1LN+2 - ,Ni+n—1

nx for §=0,1,- N
YN+ ia for
wi=1jun for =01, -+ N+mn
g, =1
Gu = Xo/

Giv: = nih Lgi (A + 1) — g4, i=L2 - N-+n—1
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i Nam ’

2 q:
-0

The above formulas will be denoted collectively as pro-
cedure (+).

A simple way of defining operational availability for
our purpose is to specify a number k, 0=k < n, and say
the system is “up” (i.e., operational) whenever j==N + k,
that is, at least n — k modules are operating. The opera-
tional availability is then defined by the system up-time
ratio (UTR), which is

N+k
=P

J =0

the fraction of time with at least n — k modules operating.
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j=01 - - ,N+n

Another approach is to define operational availability
as the fraction of time an individual operating location in
the system is “up” (i.e., has an operating module avail-
able). This fraction is, of course, the same for all n operat-
ing locations and is obtained from the formula

1
UTRZIA;(PJ\*+1+2PN+2+ co A nPy) 1)
This approach is applicable to the case where n inde-

pendent identical modules are operating within a DSS or
complex with a common pool of spares.

Whichever approach is used to define operational avail-
ability, a convenient way of determining the necessary
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spares complement is to specify the minimum acceptable
value, @, of the UTR and determine the smallest N for
which the UTR is greater than or equal to «. Cost con-
straints may suggest trading off operational availability
levels for different modules in such a way as to maximize
the overall operational availability of the DSN. The defini-
tion and implementation of this approach will be the sub-
ject of later investigations.

To illustrate the application of procedure (x) to the
problem of sparing, we first considered the case of n iden-
tical independently operating modules, for n = 1, 3, 5, 10,
95, and 50. Values of N were determined based on « =
0.99. Table 1 lists the results. The first five of the six values
of X used are typical failure rates taken from Refs. 6 and 7.
We used two values of 1/x, 336 hours (2 weeks) and
1776 hours (two months plus two weeks). The values of
N prescribed in Ref. 2 for the above values of n are,
respectively, 1, 3, 4, 4, 5, 5, irrespective of failure rates,
delay time, and operational availability desired.

We then considered what Rau in Ref. 3 calls an (m, n)
system, 0 << m == n. In this special case, n identical mod-
ules are normally in operation, with N spares, and the
system requirement is that a minimum of m of them must
be in operation at a given time for adequate performance.
The definition of this system also assumes that whenever
the system is in state N +n — m -+ 1, it is shut down and
reactivated only when a spare is available. Procedure ()
can also be applied to this case with a slight modification.
In the formulas comprising procedure () the possible
values of § should be truncated at N +- n — m -+ 1 because
of the shutdown rule. Then, with k = n — m,

N+n-m
UTR= S P,

j=0

or, in terms of the downtime ratio (DTR), (DTR =
1—~UTR), UTR =1 —~ Py,n-mu1

Table 2 gives some of the results of this analysis for an
{(m, 5) and (m, 10) system.

Procedure (x) gives one the capability of seeing the
effect on the UTR of increasing N. Putting N successively
equal to 0,1,2, - - -, corresponding values of UTR can
be computed. Thus one can observe the increments of
UTR that result from each additional spare. A decision
can then be made as to whether a given increment is
worth the cost of the extra spare. This flexibility is illus-
trated in Figs. 1 and 2. In both, UTR is plotted against
successive values of N for A = 150.45 X 10-%. In Fig. 1,
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1/x = 336 hours and in Fig. 2, 1/p = 1776 hours. In each
figure, graphs are given for n = 1, 3, 5, and 10. The graphs
also illustrate the importance of delay time.

IV. Computer Simulations of the Sparing
Procedures

Even if the actual repair time were exponentially dis-
tributed, it is unlikely that our assumption of exponen-
tiality for the total time between the failure of a module
and its return to the spares pool is valid. To compare the
theoretical UTRs obtained using this dubious assumption
with those likely to be achieved in a real-life situation, we
decided to simulate the cases under consideration. In each
case, we generated random failure times that were expo-
nentially distributed with mean 1/ and, to make the com-
parison as stringent as possible, we held the repair time
constant and equal to 1/u, which means that whenever a
module failed, it was assumed that it was returned to the
spares pool in exactly 336 or 1776 hours. In view of the
fact that the standard deviation of an exponentially dis-
tributed random variable with parameter p is 1/y, this is
indeed a rigorous test of how sensitive the UTR is to the
distribution of the return time of a failed module.

In the case of a single operating module (n = 1), we
kept track of those intervals of time that began with the
failure of the operating module with no spare available
for replacement and ended with the return of the next
repaired module. We will refer to these intervals as down
time. The DTR was then defined as the ratio of the sum
of the length of these intervals to the total elapsed operat-
ing time of the system (including the down time).

For n > 1, we kept track of the sum of the lengths of
the intervals of time when exactly § of the n operating
modules were down simultaneously with no spares, for
i=1,2, - - -, n. Denoting the jth sum by D; and the total
elapsed time of operation by ¢, the average DTR for each
operating module was defined as

DTR = S D, nt
1

IE

Table 3 gives the results of the simulation for sparing
a single module. The values of the parameters were
chosen so that examples would be given for DTRs falling
within each of the intervals (0.01,0.05), (0.001, 0.01), and
(0,0.001), corresponding to UTRs > 0.95, 0.99, and 0.999.
Table 4 gives the results when replacements for any of n
independently operating modules are taken from a com-
mon spares pool, for n = 3, 5, 10, 25, and 50.
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For the (m, n) system case, we kept track of the intervals
of time when N 4+ n —m + 1 of the operating modules
were in a failed state. During these intervals of down time
we assumed that the system was shut down and hence no
additional failures could occur until a spare was available.
The DTR was defined as the ratio of the total down time
to the sum of the total down time and the up time. Table 5
gives the results for various (m, n) systems.

V. Conclusion

The consistency of the results of all three simulations
with respect to the close agreement between the simu-
lated DTRs and those arrived at by theoretical considera-
tions is, in our opinion, impressive. It strongly indicates
that to determine the number of spares necessary to
achieve a given UTR, all that is needed are reasonably
accurate estimates of the failure rate of the module and
the average time it takes to return a repaired module to
the spares pool once it has failed. How this time interval
is subdivided and the nature of the probability distribu-
tions of the subintervals of time are, within limits, un-
important. In other words, the simulation results show
that the state probabilities obtained from procedure ()
are not sensitive to the actual distribution of the return
time. Thus, procedure (+) can be used as a bases for deter-
mining a spares complement in many, if not all, prac-
tical situations.

Tables 1 and 2 show that the length of the return time
is important, especially for high failure rates. The estab-
lishment of a systematic method for sparing has the added
advantage that one can easily consider trade-offs between
the number of spares needed and hence their cost, and
the cost of shipping them to and from a repair facility.
A reduction in the shipping time may result in a smaller
number of spares needed and consequently justify a
change in the shipping procedure for a particular module.

From our initial investigation we learned that some

modules may spend anywhere from two to six weeks at
the repair facility waiting for repair and that the basic
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repair philosophy is “first come first serve.” It is our con-
tention that some sort of priority scheme should be imple-
mented for two reasons. First, an efficient sparing proce-
dure that is based on valid statistical considerations must
at some time or other result in a dangerously low level of
spares. If this never happens, we have overspared. If it
happens too often then either our estimates of the param-
eters are off or the specified UTR is too low. However,
assuming that the occurrence of this phenomenon is con-
sistent with our spares philosophy for a particular module,
a priority scheme that takes into account this level of
spares and extends priority to a failed module whenever
this level is critical will have a direct impact on station
operational availability. Second, reducing the repair time
significantly has the same effect as reducing the shipping
time. If a trade-off study, particularly for expensive items,
shows that less spares are needed if priority is given
during repair, a worthwhile cost savings may result by
doing so.

The point is that an efficient method for spares provi-
sioning gives us the capability of making sensible deci-
sions based on valid information. Engineerng judgment,
as valuable as it is in many situations, is just not precise
enough for this purpose. The drastic consequences that
may result from either undersparing or oversparing can be
avoided only by applying an acceptable scientific method
to the problem of sparing. Moreover, in one sense, a pri-
ority scheme at the repair facilities can be considered as
a hedge against undersparing due to underestimating a
failure rate. In another sense, it can be considered as yet
another possible means of saving money. Both are conse-
quences devoutly to be wished.

It is our intention to pursue further the development of
an optimum spares provisioning procedure for the DSN,
incorporating the results already obtained and outlined
in this report. Our future investigations will include the
problem of spares provisioning with cost constraints and
the allocation of spares for modules that are used in more
than one DSS. Priority maintenance schemes will be in-
vestigated at a later date.
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Table 1. Number of pooled spares, N, necessary to insure a UTR == 0.99 for each of
n identical modules when they are operating independently2

r=1/336 uw=1/1776

A/10-¢ n—=1 n=23 n=5 n=10 n=2 n=250 n=1 n=23 n—=>5 n=10 =25 n=5
N N N N N N N N N N N N
2.72 0 0 0 0 0 0 0 0 0 0 0 0
47.85 1 1 1 1 1 1 1 1 2 2 3 5
150.44 1 1 1 2 2 3 2 3 4 5 10 16
481.07 2 2 3 4 6 10 3 6 8 13 27 49
791.14 2 3 4 5 9 16 5 8 12 20 42 78
1000.00 2 3 4 6 12 20 5 10 14 24 53 98

sAssuming exponentially distributed times to failure and repair; the unit of time is one hour.

Table 2. Number of spares, N, necessary to ensure a UTR == 0.99 for an (m, 5) and an (m, 10) system=

n=2>5 n =10
u=1/336 u = 1/1776 u = 1/336 w = 1/1776

MO =1 m=3 m=5{m=1 m=3 m=5|m=1 m=4 m=7 m=10| m= m—=4 m=7 m=10
N N N N N N N N N N N N N N
2.72 0 0 0 0 0 1 0 0 0 0 0 0 0 1
47.85 0 0 1 0 0 2 0 0 0 2 0 0 0 3
150.44 0 0 2 0 2 4 0 0 0 3 0 0 3 7
481.07 0 1 3 1 6 9 0 0 1 5 0 5 11 15
791.14 0 2 4 4 10 13 0 0 3 7 0 10 18 22
1000.00 0 3 5 6 12 16 0 0 4 8 1 14 22 26

aAssuming exponentially distributed times to failure and repair; the unit of time is one hour.

Table 3. Results of simulating sparing for a single module2

A/10-6 1/u N Theoretical DTR Actual simulated DTR % difference Years operated
2.72 336 0 0.00091 0.00099 —8.8 10138
2.72 1776 0 0.0048 0.0048 0 2740

47.85 336 0 0.0158 0.0158 0 556
47.85 336 1 0.00013 0.00015 —154 5946
47.85 1776 1 0.0033 0.0033 0 1845
150.44 336 0 0.0481 0.0498 —3.5 1424
150.44 336 1 0.0012 0.0013 —8.3 980
150.44 1776 1 0.0274 0.0267 +2.6 570
150.44 1776 2 0.0024 0.0027 —12.5 960
481.07 336 1 0.0111 0.0109 +1.8 433
481.07 336 2 0.00060 0.00064 —6.7 425
481.07 1776 2 0.0447 0.0484 —8.3 70
481.07 776 3 0.0095 0.0077 +18.9 440
791.14 336 1 0.0272 0.0261 +4.0 118
791.14 336 2 0.0024 0.0027 —12.5 423
791.14 1776 3 0.0404 0.0403 +0.2 455
1000.00 336 1 0.0405 0.0416 —2.7 59
1000.00 1776 4 0.0252 0.0251 +0.4 216

2Return time for repaired modules is constant and equal to 1/4; N denotes number of spares.
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Table 4. Results of simulating pooled sparing for n independent modules=

Theoretical Actual simulated

n A/10-6 1/u N DTR DTR % difference Years operated
3 2.72 1776 0 0.0048 0.0050 —4.2 6753
47.85 1776 1 0.0094 0.0104 —10.6 367
150.45 1776 2 0.0166 0.0148 +10.8 264
481.07 336 2 0.0046 0.0050 —8.7 122
481.07 1776 4 0.0406 0.0409 —0.7 123
791.14 336 2 0.0164 0.0170 —3.7 70
791.14 1776 7 0.0217 0.0235 —8.3 99
1000.00 336 2 0.0287 0.0303 —5.6 116
5 2.72 1776 0 0.0048 0.0046 +4.2 4365
47.85 1776 2 0.0020 0.0024 —20.0 219
150.45 336 0 0.0481 0.0464 +3.5 165
150.45 1776 3 0.0107 0.0113 —5.6 152
481.07 1776 6 0.0342 0.0310 +9.4 100
1000.00 1776 13 0.0158 0.0150 +5.1 69
10 2.72 1776 0 0.0048 0.0049 —2.1 4167
47.85 1776 3 0.0013 0.0010 +23.1 239
150.45 1776 4 0.0183 0.0183 0 78
481.07 1776 10 0.0384 0.0428 —11.5 61
791.14 1776 16 0.0396 0.0342 +13.6 62
1000.00 336 4 0.0370 0.0385 —4.1 59
25 47.85 1776 1 0.0460 0.0460 0 100
150.45 336 0 0.0481 0.0469 +2.5 65
150.45 1776 10 0.0053 0.0043 +18.9 91
481.07 1776 21 0.0490 0.0479 +2.2 16
50 2.72 1776 1 0.00054 0.00057 —5.6 877
47.85 336 1 0.0050 0.0051 —2.0 48
47.85 1776 2 0.0432 0.0399 +7.6 52
150.45 1776 11 0.0467 0.0452 +3.2 48

aReturn time for repaired modules is constant and equal to 1/g; N denotes the number of pooled spares.
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Table 5. Results of simulating sparing for an (m, n) systema

n m A/10-6 1/u N TheDo;(‘e[t{lcal Actual simulated % differenced  Years operated
10 10 2,72 336 0 0.0090 0.0084 +6.7 2271
5 5 272 1776 0 0.0236 0.0256 —8.5 3946
5 4 47.85 1776 0 0.0482 0.0464 +3.7 270
10 9 47.85 1776 1 0.0400 0.0402 —0.5 124
25 21 47.85 1776 2 0.0031 0.0031 0 100
5 4 150.45 336 0 0.0200 0.0221 —10.5 157
5 3 150.45 1776 1 0.0177 0.0179 —1.1 84
10 8 150.45 1776 3 0.0261 0.0241 +7.7 118
25 18 150.45 1776 1 0.0475 0.0468 +1.5 112
5 5 481.07 336 2 0.0396 0.0393 +0.8 49
5 3 481.07 1776 4 0.0397 0.0421 —6.0 55
10 7 481.07 336 1 0.0096 0.0078 +18.8 79
10 3 481.07 1776 0 0.0267 0.0289 —82 44
10 7 481.07 1776 11 0.0073 0.0064 +12.3 95
5 1 791.14 1776 1 0.0397 0.0325 +18.1 116
5 3 791.14 336 1 0.0174 0.0173 +0.6 32
5 2 791.14 1776 4 0.0490 0.0461 +59 61
5 5 791.14 1776 13 0.0073 0.0068 +6.8 113
5 1 1000.00 336 0 0.0010 0.00087 +13.0 92
5 1 1000.00 1776 2 0.0438 0.0462 —5.5 90
5 2 1000.00 336 1 0.0044 0.0051 —15.9 79
5 2 1000.00 1776 6 0.0423 0.0408 +3.5 59

sReturn time for repaired modules is constant and equal to 1/4; N denotes the number of spares for the system.
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Fig. 1. UTRvs N for A — 150.45 X 10-i/h, 1/ 4 == 336 hours Fig. 2. UTRvs N for x = 150.45 X 10-6/h, 1/u = 1776 hours

110 JPL TECHNICAL REPORT 32-1526, VOL. XVIN



